Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Gut ; 72(Suppl 1):A25-A28, 2023.
Article in English | ProQuest Central | ID: covidwho-20234065

ABSTRACT

IDDF2023-ABS-0045 Figure 1 IDDF2023-ABS-0045 Figure 2 IDDF2023-ABS-0045 Figure 3 IDDF2023-ABS-0045 Figure 4

2.
Cardiovascular Therapy and Prevention (Russian Federation) ; 22(3):50-59, 2023.
Article in Russian | EMBASE | ID: covidwho-2318779

ABSTRACT

Aim. To study the effect of inhalation therapy with an active hydrogen (AH) on the protein composition of exhaled breath condensate (EBC) in patients with post-COVID syndrome (PCS). Material and methods. This randomized controlled parallel prospective study included 60 patients after coronavirus disease 2019 (COVID-19) with PCS during the recovery period and clinical manifestations of chronic fatigue syndrome who received standard therapy according to the protocol for managing patients with chronic fatigue syndrome (CFS). The patients were divided into 2 groups: group 1 (main) - 30 people who received standard therapy and AH inhalations (SUISONIA, Japan) for 10 days, and group 2 (control) - 30 medical workers who received only standard therapy. Patients in both groups were comparable in sex and mean age. All participants in the study were sampled with EBC on days 1 and 10. Samples were subjected to tryptic digestion and high-performance liquid chromatography combined with tandem mass spectrometry analysis using a nanoflow chromatograph (Dionex 3000) in tandem with a high-resolution time-of-flight mass spectrometer (timsTOF Pro). Results. A total of 478 proteins and 1350 peptides were identified using high resolution mass spectrometry. The number of proteins in samples after AH therapy, on average, is 12% more than before treatment. An analysis of the distribution of proteins in different groups of patients showed that only half of these proteins (112) are common for all groups of samples and are detected in EBC before, after, and regardless of hydrogen therapy. In addition to the qualitative difference in the EBC protein compositions in different groups, quantitative changes in the concentration of 36 proteins (mainly structural and protective) were also revealed, which together made it possible to reliably distinguish between subgroups before and after treatment. It is worth noting that among these proteins there are participants of blood coagulation (alpha-1-antitrypsin), chemokine- and cytokine-mediated inflammation, and a number of signaling pathways (cytoplasmic actin 2), response to oxidative stress (thioredoxin), glycolysis (glyceraldehyde-3- phosphate dehydrogenase), etc. Conclusion. The use of hydrogen therapy can contribute to the switching of a number of physiological processes, which may affect the success of recovery in PCS patients. In particular, the obtained results indicate the activation of aerobic synthesis of adenosine triphosphate in mitochondria by hydrogen therapy, which correlates well with the decrease in the blood lactate level detected by laboratory studies. At the same time, this therapy can inhibit pro-inflammatory activity, negatively affecting the coagulation and signaling pathways of integrins and apoptosis, and, in addition, activate protective pathways, tricarboxylic acid cycle, FAS signaling, and purine metabolism, which may be essential for effective recovery after COVID-19.Copyright © 2023 Vserossiiskoe Obshchestvo Kardiologov. All rights reserved.

3.
Arkivoc ; 2022(6):199-219, 2022.
Article in English | Scopus | ID: covidwho-2303863

ABSTRACT

2-Deoxy-D-glucose (2-DG) is a non-metabolizable glucose analog that has shown promising pharmacological activities and has been used to study the role of glucose in cancer cells. 2-DG is an inhibitor of glycolysis, potential Energy Restriction Mimetic agent and inhibits pathogen-associated molecular patterns. Its radioisotope derivatives have application as tracers. Recently, 2-DG has been used as an anti-COVID-19 drug lowering the need for supplemental oxygen. In this review, different synthetic strategies for preparation of 2-DG including enzymatic synthesis have been discussed. The understanding of these methods would help in developing therapeutics or diagnostic agents aimed at exploring therapeutic targets related with energy metabolism. © AUTHOR(S).

4.
Clinical Immunology Communications ; 2:118-129, 2022.
Article in English | EMBASE | ID: covidwho-2300163

ABSTRACT

Emerging research shows that innate immunity can also keep the memory of prior experiences, challenging the long-held notion that immunological memory is only the domain of the adaptive immune cells. However, the absence of immunological memory in innate immune responses has recently been brought into question. Now it is known that after a few transient activations, innate immune cells may acquire immunological memory phenotype, resulting in a stronger response to a subsequent secondary challenge. When exposed to particular microbial and/or inflammatory stimuli, trained innate immunity is characterized by the enhanced non-specific response, which is regulated by substantial metabolic alterations and epigenetic reprogramming. Trained immunity is acquired by two main reprogramming, namely, epigenetic reprogramming and metabolic adaptation/reprogramming. Epigenetic reprogramming causes changes in gene expression and cell physiology, resulting in internal cell signaling and/or accelerated and amplified cytokine release. Metabolic changes due to trained immunity induce accelerated glycolysis and glutaminolysis. As a result, trained immunity can have unfavorable outcomes, such as hyper inflammation and the development of cardiovascular diseases, autoinflammatory diseases, and neuroinflammation. In this review, the current scenario in the area of trained innate immunity, its mechanisms, and its involvement in immunological disorders are briefly outlined.Copyright © 2022

5.
Annals of Clinical and Analytical Medicine ; 13(11):1224-1228, 2022.
Article in English | EMBASE | ID: covidwho-2272409

ABSTRACT

Aim: Coronavirus disease 2019 (COVID-19) is an epidemic disease with variable symptoms and high mortality rates. Therefore, patient follow-up is very significant. We aimed to investigate whether blood urea nitrogen (BUN), D-dimer and lactate parameters, which are laboratory tests used in follow-up, predict mortality. Material(s) and Method(s): The study included 173 COVID-19 patients hospitalized in the pandemic intensive care unit from March 2020 to June 2020. We retrospectively recorded patient age, gender, comorbidity, radiological involvement, oxygen demand, APACHE scores, in-hospital mortality status, BUN, lactate, and D-dimer levels, BUN/D-dimer ratio (BDR), BUN/lactate ratio (BLR). Then we made the statistical comparison between the groups by grouping the patients as discharged and deceased. Result(s): Among the patients included in the study, 107 (61.8%) were male and 66 (38.2%) were female. The mean ages between those discharged and those who died in the hospital were 73 and 67.5 years, respectively, and there was a statistically significant difference. The median BUN, d-dimer, lactate and BDR, BLR values of the patients in the non-survivor group were significantly higher than those in the survivor group. BLR had the highest diagnostic ratio (25.03) for estimating in-hospital COVID-19 mortality. Discussion(s): We found that BUN, BDR, and BLR levels were reliable predictors of in-hospital mortality in COVID-19 patients. However, BLR was a potent risk assessment tool, especially in defining the risk of in-hospital death.Copyright © 2022, Derman Medical Publishing. All rights reserved.

6.
Front Immunol ; 14: 1064101, 2023.
Article in English | MEDLINE | ID: covidwho-2234033

ABSTRACT

Cellular metabolism is essential for the correct function of immune system cells, including Natural Killer cells (NK). These cells depend on energy to carry out their effector functions, especially in the early stages of viral infection. NK cells participate in the innate immune response against viruses and tumors. Their main functions are cytotoxicity and cytokine production. Metabolic changes can impact intracellular signals, molecule production, secretion, and cell activation which is essential as the first line of immune defense. Metabolic variations in different immune cells in response to a tumor or pathogen infection have been described; however, little is known about NK cell metabolism in the context of viral infection. This review summarizes the activation-specific metabolic changes in NK cells, the immunometabolism of NK cells during early, late, and chronic antiviral responses, and the metabolic alterations in NK cells in SARS-CoV2 infection. The modulation points of these metabolic routes are also discussed to explore potential new immunotherapies against viral infections.


Subject(s)
COVID-19 , Virus Diseases , Humans , RNA, Viral/metabolism , COVID-19/metabolism , SARS-CoV-2 , Killer Cells, Natural , Virus Diseases/metabolism
7.
Mini Rev Med Chem ; 22(18): 2344-2349, 2022.
Article in English | MEDLINE | ID: covidwho-2039571

ABSTRACT

COVID-19 has entered our lives as an infection with high mortality rates. Although the vaccination process has provided benefits, the death toll remains frightening worldwide. Therefore, drugs and combined therapies that can be used against COVID-19 infection are still being investigated. Most of these antiviral medications are investigational drug candidates that are still in clinical trials. In this context, holistic and different approaches for the treatment of COVID-19, including prophylactic use of natural medicines, are under investigation and may offer potential treatment options due to the fact that this is still an unmet medical need of the world. Thus, inhibiting the increased glycolysis in COVID-19 infection with glycolysis inhibitors may be beneficial for patient survival. This short review highlights the potential benefits of glycolysis inhibition as well as controlling the elevated glucose levels in patients with COVID-19.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drugs, Investigational , Glucose , Glycolysis , Humans , SARS-CoV-2
8.
Exp Hematol Oncol ; 11(1): 48, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2038943

ABSTRACT

BACKGROUND: Primary immune thrombocytopenia (ITP) is an autoimmune disease. Some ITP patients are associated with pathogen infection undetected with conventional technologies. Investigating the changes of T cells and potential metabolic mechanism are important for better understanding of ITP. METHODS: The study enrolled 75 newly diagnosed ITP patients. The pathogens of patients were detected by metagenomic next-generation sequencing (mNGS). Plasma lipids were measured by liquid chromatography-mass spectrometry (LC-MS). CD4 T cell and CD8 T cell were analyzed using flow cytometry. Mitochondrial reactive oxygen species (ROS) and mitochondrial membrane potential were measured by flow cytometry. Seahorse XF real-time ATP rate assay was used to investigate the change of cellular metabolism. RESULTS: Positive plasma pathogens were detected in seven ITP patients. Of them, 5 (71.4%) positive pathogen-ITP patients were no response (NR) after first-line treatment with corticosteroids. Regulatory T cells (Tregs) increased significantly in positive pathogen-ITP patients compared to negative pathogen-ITP patients and healthy controls (HC). Mitochondrial membrane potential of Th17 and Tregs were decreased in positive pathogen-ITP and negative pathogen-ITP patients, compared to HC (all p < 0.05). The overall metabolism flux of positive pathogen-ITP patients was decreased, as compared to HC (p = 0.004), of them a higher proportion of glycolysis-derived ATP and a smaller proportion of oxidative phosphorylation (OXPHOS)-derived ATP were found in Tregs. The ATP rate index of Tregs was decreased significantly in positive pathogen-ITP patients compared to negative pathogen-ITP patients and HC (p < 0.05). CONCLUSIONS: Impaired mitochondria function of Tregs in positive pathogen-ITP patients caused a decrease of OXPHOS-derived ATP and overall metabolism flux that might be the cause of steroid resistance in ITP patients.

9.
Molecules ; 27(18)2022 Sep 12.
Article in English | MEDLINE | ID: covidwho-2033064

ABSTRACT

Viral infection almost invariably causes metabolic changes in the infected cell and several types of host cells that respond to the infection. Among metabolic changes, the most prominent is the upregulated glycolysis process as the main pathway of glucose utilization. Glycolysis activation is a common mechanism of cell adaptation to several viral infections, including noroviruses, rhinoviruses, influenza virus, Zika virus, cytomegalovirus, coronaviruses and others. Such metabolic changes provide potential targets for therapeutic approaches that could reduce the impact of infection. Glycolysis inhibitors, especially 2-deoxy-D-glucose (2-DG), have been intensively studied as antiviral agents. However, 2-DG's poor pharmacokinetic properties limit its wide clinical application. Herein, we discuss the potential of 2-DG and its novel analogs as potent promising antiviral drugs with special emphasis on targeted intracellular processes.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Deoxyglucose/pharmacology , Glucose , Glycolysis , Humans , Mannose , SARS-CoV-2 , Zika Virus Infection/drug therapy
10.
Journal of Clinical Oncology ; 40(16), 2022.
Article in English | EMBASE | ID: covidwho-2005656

ABSTRACT

Background: Induction FOLFOX followed by PET-directed CRT prior to surgery demonstrated positive results in the CALGB 80803 study. We investigated the safety and efficacy of adding D, an anti-PD-L1 antibody, to PET-directed CRT. Methods: Patients (pts) with locally advanced esophageal/GEJ adenocarcinoma were enrolled. Pts received 2 cycles of mFOLFOX6 prior to repeat PET/CT. PET responders (≥35% reduction in SUV (PETr)) received 5-FU/capecitabine and oxaliplatin with RT to 50.4Gy, while induction PET non-responders (PETnr) received carboplatin/paclitaxel with RT. All Pts received D 1,500 mg q4W ×2 starting 2 weeks prior to CRT. Esophagectomy was planned 6-8 weeks after CRT. Pts with R0 resections received adjuvant D 1,500mg q4W ×6. The primary endpoint was the pathologic complete response (pCR) rate. Results: 36 pts were enrolled. Clinical ≥T3 disease was seen in 32 pts (88.9%, cT4 = 3) and ≥N1 in 23 (63.9%) pts. PD-L1 CPS was ≥1 in 25 (71.4%) of 35 tested with 14 (40%) ≥5. Microsatellite instability (MSI) was identified in 3 (8.3%) pts. 25 (70%) pts were PETr. Preop treatment was well tolerated with no new safety signals. Three pts had disease progression prior to surgery. pCR was identified in 8 (22.2%) pts and 22 (64.7%) had major pathologic response (MPR;ypTanyN0 + ≥90% response). Those with MSI tumors had ≥90% treatment response (1 pCR, 1: ypT1aN0 99% response, 1: ypT2N0, 90% response). 17 (73.9%) of 23 cN+ pts had ypN0 disease. MPR was associated with PD-L1 ≥1 (p = 0.03) and with a higher tumor mutational burden (TMB;p = 0.016) on MSK-IMPACT testing. Adjuvant D was commenced in 27 pts, with a median number of 6 cycles. Early discontinuation was due to risks of visits due to COVID19 (4, 15%), progressive disease (3, 11%), late surgical complications (2, 7%) and immune toxicity (1, 4%). With a median follow-up of 30 months, OS rates were 92% [95%CI: 83%-100%] and 85 % [95%CI: 74%-98%] at 12 and 24 months post induction. 12 and 24-month PFS rates were 81% [95%CI: 69%-95%] and 71% [95%CI: 58%-88%] respectively. In the 33 operated pts, 12 and 24-month disease free survival was 82% [95%CI: 70%-96%] and 78% [95%CI: 65%-94%], respectively. In addition to SUV on PET, total lesion glycolysis (TLG) was correlated with pathologic response. In cases with borderline change in SUV, TLG could predict response to treatment. One PETnr with 30.8% reduction in SUV had 88.1% reduction in TLG and pCR. Conversely, a PETr (-36.3%) who had an increase in TLG (39.3%) had only 40% treatment response on pathology. Conclusions: The addition of D to induction FOLFOX and PETdirected CRT prior to surgery is safe and appears effective with a high rate of pathologic response, as well as encouraging survival data. PD-L1 CPS≥1 and higher TMB may be associated with MPR. TLG is a novel PET variable that should be studied prospectively. Additional correlatives and comparison to a cohort treated with standard PET-directed CRT will be presented.

11.
Int J Mol Sci ; 23(15)2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1994084

ABSTRACT

Tuberculosis remains a major threat to global public health, with more than 1.5 million deaths recorded in 2020. Improved interventions against tuberculosis are urgently needed, but there are still gaps in our knowledge of the host-pathogen interaction that need to be filled, especially at the site of infection. With a long history of infection in humans, Mycobacterium tuberculosis (Mtb) has evolved to be able to exploit the microenvironment of the infection site to survive and grow. The immune cells are not only reliant on immune signalling to mount an effective response to Mtb invasion but can also be orchestrated by their metabolic state. Cellular metabolism was often overlooked in the past but growing evidence of its importance in the functions of immune cells suggests that it can no longer be ignored. This review aims to gain a better understanding of mucosal immunometabolism of resident effector cells, such as alveolar macrophages and mucosal-associated invariant T cells (MAIT cells), in response to Mtb infection and how Mtb manipulates them for its survival and growth, which could address our knowledge gaps while opening up new questions, and potentially be applied for future vaccination and therapeutic strategies.


Subject(s)
Mucosal-Associated Invariant T Cells , Mycobacterium tuberculosis , Tuberculosis , Host-Pathogen Interactions , Humans , Immunity, Innate , Tuberculosis/microbiology
12.
Front Cell Infect Microbiol ; 12: 910864, 2022.
Article in English | MEDLINE | ID: covidwho-1974642

ABSTRACT

Dendritic cells (DCs) are important mediators of the induction and regulation of adaptive immune responses following microbial infection and inflammation. Sensing environmental danger signals including viruses, microbial products, or inflammatory stimuli by DCs leads to the rapid transition from a resting state to an activated mature state. DC maturation involves enhanced capturing and processing of antigens for presentation by major histocompatibility complex (MHC) class I and class II, upregulation of chemokines and their receptors, cytokines and costimulatory molecules, and migration to lymphoid tissues where they prime naive T cells. Orchestrating a cellular response to environmental threats requires a high bioenergetic cost that accompanies the metabolic reprogramming of DCs during activation. We previously demonstrated that DCs undergo a striking functional transition after stimulation of the retinoic acid-inducible gene I (RIG-I) pathway with a synthetic 5' triphosphate containing RNA (termed M8), consisting of the upregulation of interferon (IFN)-stimulated antiviral genes, increased DC phagocytosis, activation of a proinflammatory phenotype, and induction of markers associated with immunogenic cell death. In the present study, we set out to determine the metabolic changes associated with RIG-I stimulation by M8. The rate of glycolysis in primary human DCs was increased in response to RIG-I activation, and glycolytic reprogramming was an essential requirement for DC activation. Pharmacological inhibition of glycolysis in monocyte-derived dendritic cells (MoDCs) impaired type I IFN induction and signaling by disrupting the TBK1-IRF3-STAT1 axis, thereby countering the antiviral activity induced by M8. Functionally, the impaired IFN response resulted in enhanced viral replication of dengue, coronavirus 229E, and Coxsackie B5.


Subject(s)
Antiviral Agents , Dendritic Cells , Antiviral Agents/metabolism , Glycolysis , Humans , Monocytes , Tretinoin/metabolism
13.
J Transl Med ; 20(1): 338, 2022 07 28.
Article in English | MEDLINE | ID: covidwho-1962854

ABSTRACT

BACKGROUND: Cytokine release syndrome (CRS) is a strong immune system response that can occur as a result of the reaction of a cellular immunotherapy with malignant cells. While the frequency and management of CRS in CAR T-cell therapy has been well documented, there is emerging interest in pre-emptive treatment to reduce CRS severity and improve overall outcomes. Accordingly, identification of genomic determinants that contribute to cytokine release may lead to the development of targeted therapies to prevent or abrogate the severity of CRS. METHODS: Forty three clinical CD22 CAR T-cell products were collected for RNA extraction. 100 ng of mRNA was used for Nanostring assay analysis which is based on the nCounter platform. Several public datasets were used for validation purposes. RESULTS: We found the expression of the PFKFB4 gene and glycolytic pathway activity were upregulated in CD22 CAR T-cells given to patients who developed CRS compared to those who did not experience CRS. Moreover, these results were further validated in cohorts with COVID-19, influenza infections and autoimmune diseases, and in tumor tissues. The findings were similar, except that glycolytic pathway activity was not increased in patients with influenza infections and systemic lupus erythematosus (SLE). CONCLUSION: Our data strongly suggests that PFKFB4 acts as a driving factor in mediating cytokine release in vivo by regulating glycolytic activity. Our results suggest that it would beneficial to develop drugs targeting PFKFB4 and the glycolytic pathway for the treatment of CRS.


Subject(s)
COVID-19 , Influenza, Human , COVID-19/therapy , Cytokine Release Syndrome , Cytokines/metabolism , Genomics , Humans , Immunotherapy , Immunotherapy, Adoptive/methods , Phosphofructokinase-2 , Receptors, Chimeric Antigen
14.
Front Pharmacol ; 13: 899633, 2022.
Article in English | MEDLINE | ID: covidwho-1952533

ABSTRACT

Treatment choices for the "severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2)" are inadequate, having no clarity on efficacy and safety profiles. Currently, no established intervention has lowered the mortality rate in the "coronavirus disease 2019 (COVID-19)" patients. Recently, 2-deoxy-D-glucose (2-DG) has evaluated as a polypharmacological agent for COVID-19 therapy owing to its influence on the glycolytic pathway, interaction with viral proteins, and anti-inflammatory action. In May 2020, the Indian drug regulatory authority approved 2-DG as an emergency adjunct therapy in mild to severe COVID-19 patients. Clinical studies of 2-DG corroborate that it aids in faster recovery of hospitalized patients and decreases supplemental oxygen. Herein, we describe the development process, synthesis, mechanism of viral eradication, and preclinical and clinical development of 2-DG and its derivatives as molecularly targeted therapeutics for COVID-19 treatment.

15.
Cell Mol Life Sci ; 79(6): 301, 2022 May 19.
Article in English | MEDLINE | ID: covidwho-1919756

ABSTRACT

Escalated innate immunity plays a critical role in SARS-CoV-2 pathology; however, the molecular mechanism is incompletely understood. Thus, we aim to characterize the molecular mechanism by which SARS-CoV-2 Spike protein advances human macrophage (MÏ´) inflammatory and glycolytic phenotypes and uncover novel therapeutic strategies. We found that human MÏ´s exposed to Spike protein activate IRAK4 phosphorylation. Blockade of IRAK4 in Spike protein-stimulated MÏ´s nullifies signaling of IRAK4, AKT, and baseline p38 without affecting ERK and NF-κB activation. Intriguingly, IRAK4 inhibitor (IRAK4i) rescues the SARS-CoV-2-induced cytotoxic effect in ACE2+HEK 293 cells. Moreover, the inflammatory reprogramming of MÏ´s by Spike protein was blunted by IRAK4i through IRF5 and IRF7, along with the reduction of monokines, IL-6, IL-8, TNFα, and CCL2. Notably, in Spike protein-stimulated MÏ´s, suppression of the inflammatory markers by IRAK4i was coupled with the rebalancing of oxidative phosphorylation over metabolic activity. This metabolic adaptation promoted by IRAK4i in Spike protein-activated MÏ´s was shown to be in part through constraining PFKBF3, HIF1α, cMYC, LDHA, lactate expression, and reversal of citrate and succinate buildup. IRAK4 knockdown could comparably impair Spike protein-enhanced inflammatory and metabolic imprints in human MÏ´s as those treated with ACE2, TLR2, and TLR7 siRNA. Extending these results, in murine models, where human SARS-CoV-2 Spike protein was not recognized by mouse ACE2, TLRs were responsible for the inflammatory and glycolytic responses instigated by Spike protein and were dysregulated by IRAK4i therapy. In conclusion, IRAK4i may be a promising strategy for severe COVID-19 patients by counter-regulating ACE2 and TLR-mediated MÏ´ hyperactivation. IRAK4i therapy counteracts MÏ´ inflammatory and glycolytic reprogramming triggered by Spike protein. This study illustrates that SARS-CoV-2 Spike protein activates IRAK4 signaling via ACE2 as well as TLR2 and TLR7 sensing in human MÏ´s. Remarkably, IRAK4i treatment can dysregulate both ACE-dependent and independent (via TLR sensing) SARS-CoV-2 Spike protein-activated inflammatory and metabolic imprints.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Animals , HEK293 Cells , Humans , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/pharmacology , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Macrophages/metabolism , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 7/metabolism
16.
Arthritis & Rheumatology ; 74(6):1-2, 2022.
Article in English | Academic Search Complete | ID: covidwho-1888643

ABSTRACT

The article offers information about the role of lysine-specific demethylase I in metabolically integrating osteoclast differentiation and inflammatory bone resorption through hypoxia0inducible factor 1-alpha and E2FI. It mentions that osteoclasts are the primary cells responsible for bone resorption in rheumatoid arthritis (RA).

17.
Pathogens ; 11(5)2022 May 03.
Article in English | MEDLINE | ID: covidwho-1875722

ABSTRACT

Interferons (IFNs) are an essential part of innate immunity and contribute to adaptive immune responses. Here, we employed a loss-of-function analysis with human A549 respiratory epithelial cells with a knockout (KO) of the type I IFN receptor (IFNAR KO), either solely or together with the receptor of type III IFN (IFNAR/IFNLR1 KO). The course of rubella virus (RuV) infection on the IFNAR KO A549 cells was comparable to the control A549. However, on the IFNAR/IFNLR1 KO A549 cells, both genome replication and the synthesis of viral proteins were significantly enhanced. The generation of IFN ß during RuV infection was influenced by type III IFN signaling. In contrast to IFNAR KO A549, extracellular IFN ß was not detected on IFNAR/IFNLR1 KO A549. The bioenergetic profile of RuV-infected IFNAR/IFNLR1 KO A549 cells generated by extracellular flux analysis revealed a significant increase in glycolysis, whereas mitochondrial respiration was comparable between all three cell types. Moreover, the application of the glucose analogue 2-deoxy-D-glucose (2-DG) significantly increased viral protein synthesis in control A549 cells, while no effect was noted on IFNAR/IFNLR KO A549. In conclusion, we identified a positive signaling circuit of type III IFN signaling on the generation of IFN ß during RuV infection and an IFN signaling-dependent contribution of glycolysis to RuV infection. This study on epithelial A549 cells emphasizes the interaction between glycolysis and antiviral IFN signaling and notably, the antiviral activity of type III IFNs against RuV infection, especially in the absence of both type I and III IFN signaling, the RuV replication cycle was enhanced.

18.
Viruses ; 14(5)2022 05 06.
Article in English | MEDLINE | ID: covidwho-1862913

ABSTRACT

Clinical studies indicate that patients infected with SARS-CoV-2 develop hyperinflammation, which correlates with increased mortality. The SARS-CoV-2/COVID-19-dependent inflammation is thought to occur via increased cytokine production and hyperactivity of RAGE in several cell types, a phenomenon observed for other disorders and diseases. Metabolic reprogramming has been shown to contribute to inflammation and is considered a hallmark of cancer, neurodegenerative diseases, and viral infections. Malfunctioning glycolysis, which normally aims to convert glucose into pyruvate, leads to the accumulation of advanced glycation end products (AGEs). Being aberrantly generated, AGEs then bind to their receptor, RAGE, and activate several pro-inflammatory genes, such as IL-1b and IL-6, thus, increasing hypoxia and inducing senescence. Using the lung epithelial cell (BEAS-2B) line, we demonstrated that SARS-CoV-2 proteins reprogram the cellular metabolism and increase pyruvate kinase muscle isoform 2 (PKM2). This deregulation promotes the accumulation of AGEs and senescence induction. We showed the ability of the PKM2 stabilizer, Tepp-46, to reverse the observed glycolysis changes/alterations and restore this essential metabolic process.


Subject(s)
COVID-19 , Pneumonia , Humans , Inflammation , Pyridazines , Pyrroles , SARS-CoV-2
19.
Int J Mol Sci ; 23(7)2022 Mar 23.
Article in English | MEDLINE | ID: covidwho-1785727

ABSTRACT

The field of immunometabolism seeks to decipher the complex interplay between the immune system and the associated metabolic pathways. The role of small molecules that can target specific metabolic pathways and subsequently alter the immune landscape provides a desirable platform for new therapeutic interventions. Immunotherapeutic targeting of suppressive cell populations, such as myeloid-derived suppressor cells (MDSC), by small molecules has shown promise in pathologies such as cancer and support testing of similar host-directed therapeutic approaches in MDSC-inducing conditions such as tuberculosis (TB). MDSC exhibit a remarkable ability to suppress T-cell responses in those with TB disease. In tumors, MDSC exhibit considerable plasticity and can undergo metabolic reprogramming from glycolysis to fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS) to facilitate their immunosuppressive functions. In this review we look at the role of MDSC during M. tb infection and how their metabolic reprogramming aids in the exacerbation of active disease and highlight the possible MDSC-targeted metabolic pathways utilized during M. tb infection, suggesting ways to manipulate these cells in search of novel insights for anti-TB therapies.


Subject(s)
Mycobacterium tuberculosis , Myeloid-Derived Suppressor Cells , Neoplasms , Tuberculosis , Biology , Humans , Neoplasms/metabolism , Tuberculosis/microbiology
20.
Front Cardiovasc Med ; 9: 783974, 2022.
Article in English | MEDLINE | ID: covidwho-1775649

ABSTRACT

Coronavirus disease-2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2; CoV2) is a deadly contagious infectious disease. For those who survive COVID-19, post-COVID cardiac damage greatly increases the risk of cardiomyopathy and heart failure. Currently, the number of COVID-related cases are increasing in Latin America, where a major COVID comorbidity is Chagas' heart disease, which is caused by the parasite Trypanosoma cruzi. However, the interplay between indeterminate Chagas disease and COVID-19 is unknown. We investigated the effect of CoV2 infection on heart pathology in T. cruzi infected mice (coinfected with CoV2 during the indeterminate stage of T. cruzi infection). We used transgenic human angiotensin-converting enzyme 2 (huACE2/hACE2) mice infected with CoV2, T. cruzi, or coinfected with both in this study. We found that the viral load in the hearts of coinfected mice is lower compared to the hearts of mice infected with CoV2 alone. We demonstrated that CoV2 infection significantly alters cardiac immune and energy signaling via adiponectin (C-ApN) and AMP-activated protein kinase (AMPK) signaling. Our studies also showed that increased ß-adrenergic receptor (b-AR) and peroxisome proliferator-activated receptors (PPARs) play a major role in shifting the energy balance in the hearts of coinfected female mice from glycolysis to mitochondrial ß-oxidation. Our findings suggest that cardiac metabolic signaling may differently regulate the pathogenesis of Chagas cardiomyopathy (CCM) in coinfected mice. We conclude that the C-ApN/AMPK and b-AR/PPAR downstream signaling may play major roles in determining the progression, severity, and phenotype of CCM and heart failure in the context of COVID.

SELECTION OF CITATIONS
SEARCH DETAIL